Unsupervised domain adaptation with deep network based on discriminative class-wise MMD

Author:

Lin Hsiau-Wen1,Tsai Yihjia2,Lin Hwei Jen2,Yu Chen-Hsiang3,Liu Meng-Hsing2

Affiliation:

1. Department of Information Management, Chihlee University of Technology, Taipei, Taiwan

2. Department of Computer Science and Information Engineering, Tamkang University, Taipei, Taiwan

3. Multidisciplinary Graduate Engineering, College of Engineering, Northeastern University, Boston, MA, USA

Abstract

<abstract> <p>General learning algorithms trained on a specific dataset often have difficulty generalizing effectively across different domains. In traditional pattern recognition, a classifier is typically trained on one dataset and then tested on another, assuming both datasets follow the same distribution. This assumption poses difficulty for the solution to be applied in real-world scenarios. The challenge of making a robust generalization from data originated from diverse sources is called the domain adaptation problem. Many studies have suggested solutions for mapping samples from two domains into a shared feature space and aligning their distributions. To achieve distribution alignment, minimizing the maximum mean discrepancy (MMD) between the feature distributions of the two domains has been proven effective. However, this alignment of features between two domains ignores the essential class-wise alignment, which is crucial for adaptation. To address the issue, this study introduced a discriminative, class-wise deep kernel-based MMD technique for unsupervised domain adaptation. Experimental findings demonstrated that the proposed approach not only aligns the data distribution of each class in both source and target domains, but it also enhances the adaptation outcomes.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3