Abstract
<abstract><p>In this paper, we give a unified method for constructing commutative relations, band relations and semilattice relations on a semihypergroup. Moreover, we show that the set of all commutative relations, the set of all band relations and the set of all semilattice relations on a semihypergroup are complete lattices.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference13 articles.
1. B. Davvaz, Semihypergroup Theory, London: Academic Press, 2016. https://doi.org/10.1016/C2015-0-06681-3
2. M. De Salvo, D. Fasino, D. Freni, G. Lo Faro, $1$-hypergroups of small sizes, Mathematics, 9 (2021), 108. https://doi.org/10.3390/math9020108
3. M. De Salvo, D. Fasino, D. Freni, G. Lo Faro, On hypergroups with a $\beta$-class of finite height, Symmetry, 12 (2020), 168. https://doi.org/10.3390/sym12010168
4. M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pures Appl., 49 (1970), 155–192.
5. D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra, 30 (2006), 3977–3989. https://doi.org/10.1081/AGB-120005830