Discrete-time stochastic modeling and optimization for reliability systems with retrial and cold standbys

Author:

Ma Mengrao1,Hu Linmin1,Wang Yuyu2,Luo Fang1

Affiliation:

1. School of Science, Yanshan University, Qinhuangdao, Hebei 066004, China

2. College of Mathematical Science, Tianjin Normal University, Tianjin 300387, China

Abstract

<abstract><p>As an effective means to improve system reliability, cold standby redundancy design has been applied in many fields. Studies on the reliability of systems with retrial mechanisms mainly focus on the assumption of continuous time, but for some engineering systems whose states cannot be continuously monitored, it is of great theoretical and practical value to establish and analyze the reliability model of the discrete-time cold standby repairable retrial system. In this paper, the lifetime, repair time, and retrial time of each component were described by geometric distribution, and the reliability and optimal design models of a discrete-time cold standby retrial system were developed. Two different models were proposed based on two types of priority rules. According to the discrete-time Markov process theory, the transition probability matrix of the system states was given. The availability, reliability function, mean time to first failure (MTTFF) of the system, and other performance measures were obtained using the iterative algorithm of the difference equation, and the generative function method, algorithms for calculating stationary probability, and transient probability of the system were designed. The particle swarm optimization (PSO) algorithm was used to determine the optimal values of the repair rate and retrial rate corresponding to the minimum value of the cost-benefit ratio. Moreover, numerical analysis was performed to show the influence of each parameter on the system reliability and the cost-benefit ratio. The reliability measures of the systems with and without retrial mechanism were analytically compared.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3