Enhancing sewage flow prediction using an integrated improved SSA-CNN-Transformer-BiLSTM model

Author:

Ye Jiawen1,Dai Lei1,Wang Haiying1

Affiliation:

1. School of Science, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

<p>Accurate prediction of sewage flow is crucial for optimizing sewage treatment processes, cutting down energy consumption, and reducing pollution incidents. Current prediction models, including traditional statistical models and machine learning models, have limited performance when handling nonlinear and high-noise data. Although deep learning models excel in time series prediction, they still face challenges such as computational complexity, overfitting, and poor performance in practical applications. Accordingly, this study proposed a combined prediction model based on an improved sparrow search algorithm (SSA), convolutional neural network (CNN), transformer, and bidirectional long short-term memory network (BiLSTM) for sewage flow prediction. Specifically, the CNN part was responsible for extracting local features from the time series, the Transformer part captured global dependencies using the attention mechanism, and the BiLSTM part performed deep temporal processing of the features. The improved SSA algorithm optimized the model's hyperparameters to improve prediction accuracy and generalization capability. The proposed model was validated on a sewage flow dataset from an actual sewage treatment plant. Experimental results showed that the introduced Transformer mechanism significantly enhanced the ability to handle long time series data, and an improved SSA algorithm effectively optimized the hyperparameter selection, improving the model's prediction accuracy and training efficiency. After introducing an improved SSA, CNN, and Transformer modules, the prediction model's $ {R^{\text{2}}} $ increased by 0.18744, $ RMSE $ (root mean square error) decreased by 114.93, and $ MAE $ (mean absolute error) decreased by 86.67. The difference between the predicted peak/trough flow and monitored peak/trough flow was within 3.6% and the predicted peak/trough flow appearance time was within 2.5 minutes away from the monitored peak/trough flow time. By employing a multi-model fusion approach, this study achieved efficient and accurate sewage flow prediction, highlighting the potential and application prospects of the model in the field of sewage treatment.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3