The multi-parameter estimation of discrete distribution without closed-form solutions by the US algorithm

Author:

Ouyang Yuanhang1,Yan Ruyun1,Shi Jianhua12

Affiliation:

1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, China

2. Fujian Key Laboratory of Granular Computing and Applications, Zhangzhou, China

Abstract

<p>Strong and steady convergence characterizes the upper-crossing/solution (US) algorithm, which is an effective method for identifying roots of a complicated nonlinear equation $ h(\theta) = 0 $. Only the case where one parameter of a distribution function can be directly specified by another parameter is taken into account by the research that is currently available. However, whether this approach can be applied in multi-parameter scenarios where one parameter cannot be clearly represented by the other is an issue deserving of more investigation. In order to extend the applicability of the US algorithm, this article used the Type Ⅰ discrete Weibull distribution with two parameters as an example. It then combined the US algorithm with the first-derivative lower bound (FLB) function method to estimate the complex situation where two parameters cannot be expressed as each other. Simulation studies and empirical analysis demonstrated that the US algorithm performs more accurately and steadily than the traditional Newton method.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3