A central local metric dimension on acyclic and grid graph

Author:

Listiana Yuni12,Susilowati Liliek1,Slamin Slamin3,Osaye Fadekemi Janet4

Affiliation:

1. Department of Mathematics, Universitas Airlangga, Surabaya 60115, Indonesia

2. Department of Sciences and Mathematics Education, Universitas Dr Soetomo, Surabaya 60118, Indonesia

3. Department of Computer Sciences, Universitas Jember, Jember 68121, Indonesia

4. Department of Mathematics and Computer Sciences, Alabama State University, USA

Abstract

<abstract><p>The local metric dimension is one of many topics in graph theory with several applications. One of its applications is a new model for assigning codes to customers in delivery services. Let $ G $ be a connected graph and $ V(G) $ be a vertex set of $ G $. For an ordered set $ W = \{ x_1, x_2, \ldots, x_k\} \subseteq V(G) $, the representation of a vertex $ x $ with respect to $ W $ is $ r_G(x|W) = \{(d(x, x_1), d(x, x_2), \ldots, d(x, x_k) \} $. The set $ W $ is said to be a local metric set of $ G $ if $ r(x|W)\neq r(y|W) $ for every pair of adjacent vertices $ x $ and $ y $ in $ G $. The eccentricity of a vertex $ x $ is the maximum distance between $ x $ and all other vertices in $ G $. Among all vertices in $ G $, the smallest eccentricity is called the radius of $ G $ and a vertex whose eccentricity equals the radius is called a central vertex of $ G $. In this paper, we developed a new concept, so-called the central local metric dimension by combining the concept of local metric dimension with the central vertex of a graph. The set $ W $ is a central local metric set if $ W $ is a local metric set and contains all central vertices of $ G $. The minimum cardinality of a central local metric set is called a central local metric dimension of $ G $. In the main result, we introduce the definition of the central local metric dimension of a graph and some properties, then construct the central local metric dimensions for trees and establish results for the grid graph.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference23 articles.

1. R. Diestel, Graphs theory, New York: Springer-Verlag Heidelberg, 2005.

2. G. Chartrand, L. Lesniak, P. Zhang, Graphs & Digraphs, 6 Eds., New York: Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b19731

3. P. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci., 22 (1988), 445–455.

4. F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), 191–195.

5. G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete. Appl. Math., 105 (2000), 99–113. http://dx.doi.org/10.1016/S0166-218X(00)00198-0.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3