The singularity of two kinds of tricyclic graphs

Author:

Ma Haicheng1,You Xiaojie1,Li Shuli23

Affiliation:

1. School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, China

2. School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou 362000, China

3. Key Laboratory of Intelligent Computing and Information Processing, Fujian Province University, Quanzhou 362000, China

Abstract

<abstract><p>Let $ G $ be a finite simple graph and let $ A(G) $ be its adjacency matrix. Then $ G $ is $ singular $ if $ A(G) $ is singular. Suppose $ P_{b_{1}}, P_{b_{2}}, P_{b_{3}} $ are three paths with disjoint vertices, where $ b_i\geq 2 (i = 1, 2, 3) $, and at most one of them is 2. Coalescing together one of the two end vertices of each of the three paths, and coalescing together the other end vertex of each of the three paths, the resulting graph is called the $ \theta $-graph, denoted by $ \theta(b_{1}, b_{2}, b_{3}) $. Let $ \alpha(a, b_{1}, b_{2}, b_{3}, s) $ be the graph obtained by merging one end of the path $ P_{s} $ with one vertex of a cycle $ C_{a} $, and merging the other end of the path $ P_{s} $ with one vertex of $ \theta(b_{1}, b_{2}, b_{3}) $ of degree 3. If $ s = 1 $, denote $ \beta(a, b_{1}, b_{2}, b_{3}) = \alpha(a, b_{1}, b_{2}, b_{3}, 1) $. In this paper, we give the necessity and sufficiency condition for the singularity of $ \alpha(a, b_{1}, b_{2}, b_{3}, s) $ and $ \beta(a, b_{1}, b_{2}, b_{3}) $, and we also prove that the probability that any given $ \alpha(a, b_{1}, b_{2}, b_{3}, s) $ is a singular graph is equal to $ \frac{35}{64} $, the probability that any given $ \beta(a, b_{1}, b_{2}, b_{3}) $ is a singular graph is equal to $ \frac{9}{16} $. From our main results we can conclude that such a $ \alpha(a, b_{1}, b_{2}, b_{3}, s) $ graph ($ \beta(a, b_{1}, b_{2}, b_{3}) $ graph) is singular if $ 4|a $ or three $ b_i (i = 1, 2, 3) $ are all odd numbers or exactly two of the three $ b_i (i = 1, 2, 3) $ are odd numbers and the length of the cycle formed by the two odd paths in $ \alpha(a, b_{1}, b_{2}, b_{3}, s) $ graph ($ \beta(a, b_{1}, b_{2}, b_{3}) $ graph) is a multiple of 4. The theoretical probability of these graphs being singular is more than half.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference30 articles.

1. F. Ashraf, H. Bamdad, A note on graphs with zero nullity, MATCH Commun. Math. Comput. Chem., 60 (2008), 15–19.

2. A. S. AL-Tarimshawy, Singular graphs, arXiv, 2018. https://doi.org/10.48550/arXiv.1806.07786

3. M. Brown, J. W. Kennedy, B. Servatius, Graph singularity, Graph Theory Notes, 25 (1993), 23–32.

4. B. Cheng, B. Liu, On the nullity of graphs, Electron. J. Linear Algebra, 16 (2007), 60–67. https://doi.org/10.13001/1081-3810.1182

5. D. Cvetković, M. Doob, H. Sachs, Spectra of graphs-theory and application, Academic Press, 1980.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Singularity of Two Kinds of Quadcyclic Peacock Graphs;Journal of Applied Mathematics and Physics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3