Affiliation:
1. Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey
2. Department of Mathematics, Graduate School of Natural and Applied Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey
3. Department of Mathematics, Faculty of Sciences, Ankara University, Ankara, Turkey
Abstract
<abstract><p>In this study, the curve theory, which occupies a very important and wide place in differential geometry, has been studied. One of the most important known methods used to analyze a curve in differential geometry is the Frenet frame, which is a moving frame that provides a coordinate system at each point of the curve. However, the Frenet frame of any curve cannot be constructed at some points. In such cases, it is useful to define an alternative frame. In this study, instead of the Frenet frame that characterizes a regular curve in Euclidean space $ E^3 $, we have defined a different and new frame on the curve. Since this new frame is defined with the aid of the Darboux vector, it is very compatible compared to many alternative frames in application. Therefore, we have named this new frame the "modified adapted frame" denoted by $ \{N^*, C^*, W^*\} $. Then, we have given some characterizations of this new frame. In addition to that, we have defined $ N^* $-slant helices and $ C^* $-slant helices according to $ \{N^*, C^*, W^*\} $. Moreover, we have studied $ C^* $-partner curves using this modified adapted frame. Consequently, by investigating applications, we have established the relationship between $ C^* $-partner curves and helices, slant helices.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference26 articles.
1. A. Ali, R. Lopez, Slant helices in Minkowski space $E^3_1$, J. Korean Math. Soc., 480 (2011), 159–167.
2. A. Ali, M. Turgut, Some characterizations of slant helices in the Euclidean space $E^n$, Hacet. J. Math. Stat., 39 (2010), 327–336.
3. F. Ateş, E. Kocakuşaklı, İ. Gök, Y. Yaylı, A study of the tubular surfaces constructed by the spherical indicatrices in Euclidean 3-space, Turk. J. Math., 42 (2018), 1711–1725. https://doi.org/10.3906/mat-1610-101
4. J. Burke, Bertrand curves associated with a pair of curves, Math. Mag., 34 (1960), 60–62. https://doi.org/10.1080/0025570X.1960.11975181
5. S. Deshmukh, B. Chen, A. Alghanemi, Natural mates of Frenet curves in Euclidean 3-space, Turk.J. Math., 42 (2018), 2826–2840. https://doi.org/10.3906/mat-1712-34
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献