Abstract
<abstract><p>Let $ \mathbb{Z}^2 $ be the two-dimensional integer lattice. For an integer $ k\geq 2 $, we say a non-zero lattice point in $ \mathbb{Z}^2 $ is $ k $-full if the greatest common divisor of its coordinates is a $ k $-full number. In this paper, we first prove that the density of $ k $-full lattice points in $ \mathbb{Z}^2 $ is $ c_k = \prod_{p}(1-p^{-2}+p^{-2k}) $, where the product runs over all primes. Then we show that the density of $ k $-full lattice points on a path of an $ \alpha $-random walk in $ \mathbb{Z}^2 $ is almost surely $ c_k $, which is independent on $ \alpha $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference10 articles.
1. P. T. Bateman, E. Grosswald, On a theorem of Erdős and Szekeres, Illinois J. Math., 2 (1958), 88–98. https://doi.org/10.1215/ijm/1255380836
2. M. Baake, R. V. Moody, P. Pleasants, Diffraction from visible lattice points and $k$-th power free integers, Discrete Math., 221 (2000), 3–42. https://doi.org/10.1016/S0012-365X(99)00384-2
3. J. Cilleruelo, J. L. Fernández, P. Fernández, Visible lattice points in random walks, Eur. J. Combin., 75 (2019), 92–112. https://doi.org/10.1016/j.ejc.2018.08.004
4. R. Durrett, Probability. Theory and Examples, fourth ed., Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2010.
5. P. Erdős, G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math., (Szeged), 7 (1935), 95–102.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the distribution of powerful and r-free lattice points;Notes on Number Theory and Discrete Mathematics;2024-07