Weight-2 input sequences of $ 1/n $ convolutional codes from linear systems point of view

Author:

Herranz Victoria1,Napp Diego2,Perea Carmen1

Affiliation:

1. Institute Center of Operations Research, Miguel Hernández University, Spain

2. Departament of Mathematics, University of Alicante, Spain

Abstract

<abstract><p>Convolutional codes form an important class of codes that have memory. One natural way to study these codes is by means of input state output representations. In this paper we study the minimum (Hamming) weight among codewords produced by input sequences of weight two. In this paper, we consider rate $ 1/n $ and use the linear system setting called $ (A, B, C, D) $ input-state-space representations of convolutional codes for our analysis. Previous results on this area were recently derived assuming that the matrix $ A $, in the input-state-output representation, is nonsingular. This work completes this thread of research by treating the nontrivial case in which $ A $ is singular. Codewords generated by weight-2 inputs are relevant to determine the effective free distance of Turbo codes.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3