Study on the symmetries and conserved quantities of flexible mechanical multibody dynamics

Author:

Zheng Mingliang12

Affiliation:

1. Faculty of Mechanical Engineering, Taihu University of Wuxi, Qianrong Road 68, Wuxi 21400, China

2. Jiangsu Key Laboratory of Green Process Equipment, Changzhou University, Changzhou 213000, China

Abstract

<abstract> <p>In this paper, in order to provides a powerful new tool for quantitative and qualitative analysis of dynamics properties in flexible mechanical multibody systems, the symmetry theory and numerical algorithms for preserving structure in modern analytical mechanics is introduced into flexible multibody dynamics. First, taking the hub-beam systems as an example, the original nonlinear partial differential-integral equations of the system dynamics model are discretized into the finite-dimensional Lagrange equations by using the assumed modal method. Second, the group analysis theory is introduced and the criterion equations and the corresponding conserved quantities of Noether symmetries are given according to the invariance principle, which provide an effective way for analytic integral theory of dynamic equations. Finally, a conserved quantity-preserving numerical algorithm is constructed by coordinates incremental discrete gradient, which makes full use of the invariance of conserved quantity to eliminate the error consumption for a long time. The simulation results show that the deeper mechanical laws and motion characteristics of flexible mechanical multibody systems dynamics can be obtained with the help of symmetries and conserved quantities, which can provide reference for more precise dynamic optimization design and advanced control of systems.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference20 articles.

1. H. T. Wu, Y. L. Xiong, Multibody system dynamics problems in mechanical engineering, China Mech. Eng., 11 (2000), 608–610. https://doi.org/10.3321/j.issn:1004-132X.2000.06.002

2. G. Q. Zhang, Modeling and control of flexible multibody systems, Ph. D. thesis, China University of Science and Technology, 2008.

3. J. C. Miao, Study on computational stretgy for flexible multi-body dynamics and analysis of large deployable antenna, Ph. D. thesis, Shanghai Jiao Tong University, 2008.

4. J. Y. Liu, J. Z. Hong, Contact-impact of satellite's panels, J. Astronaut., 21 (2000), 34–38. https://doi.org/10.3321/j.issn:1000-1328.2000.03.006

5. K. F. Guo, Study on dynamic modeling and elastic vibration control of flexible manipulator, Ph. D. thesis, Zhengzhou University, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3