Unsupervised logic mining with a binary clonal selection algorithm in multi-unit discrete Hopfield neural networks via weighted systematic 2 satisfiability

Author:

Romli Nurul Atiqah1,Zulkepli Nur Fariha Syaqina1,Kasihmuddin Mohd Shareduwan Mohd1,Zamri Nur Ezlin2,Rusdi Nur 'Afifah13,Manoharam Gaeithry1,Mansor Mohd. Asyraf4,Jamaludin Siti Zulaikha Mohd1,Malik Amierah Abdul4

Affiliation:

1. School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

2. Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

3. Institute of Engineering Mathematics, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis, Malaysia

4. School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Abstract

<p>Evaluating behavioral patterns through logic mining within a given dataset has become a primary focus in current research. Unfortunately, there are several weaknesses in the research regarding the logic mining models, including an uncertainty of the attribute selected in the model, random distribution of negative literals in a logical structure, non-optimal computation of the best logic, and the generation of overfitting solutions. Motivated by these limitations, a novel logic mining model incorporating the mechanism to control the negative literal in the systematic Satisfiability, namely Weighted Systematic 2 Satisfiability in Discrete Hopfield Neural Network, is proposed as a logical structure to represent the behavior of the dataset. For the proposed logic mining models, we used ratio of <italic>r</italic> to control the distribution of the negative literals in the logical structures to prevent overfitting solutions and optimize synaptic weight values. A new computational approach of the best logic by considering both true and false classification values of the learning system was applied in this work to preserve the significant behavior of the dataset. Additionally, unsupervised learning techniques such as Topological Data Analysis were proposed to ensure the reliability of the selected attributes in the model. The comparative experiments of the logic mining models by utilizing 20 repository real-life datasets were conducted from repositories to assess their efficiency. Following the results, the proposed logic mining model dominated in all the metrics for the average rank. The average ranks for each metric were Accuracy (7.95), Sensitivity (7.55), Specificity (7.93), Negative Predictive Value (7.50), and Mathews Correlation Coefficient (7.85). Numerical results and in-depth analysis demonstrated that the proposed logic mining model consistently produced optimal induced logic that best represented the real-life dataset for all the performance metrics used in this study.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3