Abstract
<abstract><p>Using the range for the infinity norm of inverse matrix of a strictly diagonally dominant $ M $-matrix, some new error bounds for the linear complementarity problem are obtained when the involved matrix is a $ B^S $-matrix. Theory analysis and numerical examples show that these upper bounds are more accurate than some existing results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference16 articles.
1. X. J. Chen, S. H. Xiang, Perturbation bounds of $P$-matrix linear complementarity problems, SIAM J. Optim., 18 (2007), 1250–1265. doi: 10.1137/060653019.
2. R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Academic Press, San Diego, 1992.
3. K. G. Murty, F. T. Fu, Linear complementarity, linear and nonlinear programming, Heldermann Verlag, Berlin, 1988.
4. J. M. Pe${\rm\tilde{ n }}$a, A class of $P$-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027–1037. doi: 10.1137/S0895479800370342.
5. X. J. Chen, S. H. Xiang, Computation of error bounds for $P$-matrix linear complementarity problem, Math. Program., 106 (2006), 513–525. doi: 10.1007/s10107-005-0645-9.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献