Weighted salp swarm algorithm with deep learning-powered cyber-threat detection for robust network security

Author:

Althobaiti Maha M.1,Escorcia-Gutierrez José2

Affiliation:

1. Department of Computer Science, College of Computing and Information Technology, Taif University, Taif, 21944, Saudi Arabia

2. Department of Computational Science and Electronics, Universidad de la Costa, CUC, Barranquilla, 080002, Colombia

Abstract

<abstract><p>The fast development of the internet of things has been associated with the complex worldwide problem of protecting interconnected devices and networks. The protection of cyber security is becoming increasingly complicated due to the enormous growth in computer connectivity and the number of new applications related to computers. Consequently, emerging intrusion detection systems could execute a potential cyber security function to identify attacks and variations in computer networks. An efficient data-driven intrusion detection system can be generated utilizing artificial intelligence, especially machine learning methods. Deep learning methods offer advanced methodologies for identifying abnormalities in network traffic efficiently. Therefore, this article introduced a weighted salp swarm algorithm with deep learning-powered cyber-threat detection and classification (WSSADL-CTDC) technique for robust network security, with the aim of detecting the presence of cyber threats, keeping networks secure using metaheuristics with deep learning models, and implementing a min-max normalization approach to scale the data into a uniform format to accomplish this. In addition, the WSSADL-CTDC technique applied the shuffled frog leap algorithm (SFLA) to elect an optimum subset of features and applied a hybrid convolutional autoencoder (CAE) model for cyber threat detection and classification. A WSSA-based hyperparameter tuning method can be employed to enhance the detection performance of the CAE model. The simulation results of the WSSADL-CTDC system were examined in the benchmark dataset. The extensive analysis of the accuracy of the results found that the WSSADL-CTDC technique exhibited a better value of 99.13% than comparable methods on different measures.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3