Author:
Yan Tongjiang, ,Ainiwaer Pazilaiti,Du Lianbo
Abstract
<abstract><p>Jing et al. dealed with all possible Whiteman generalized cyclotomic binary sequences $ s(a, b, c) $ with period $ N = pq $, where $ (a, b, c) \in \{0, 1\}^3 $ and $ p, q $ are distinct odd primes (Jing et al. arXiv:2105.10947v1, 2021). They have determined the autocorrelation distribution and the 2-adic complexity of these sequences in a unified way by using group ring language and a version of quadratic Gauss sums. In this paper, we determine the linear complexity and the 1-error linear complexity of $ s(a, b, c) $ in details by using the discrete Fourier transform (DFT). The results indicate that the linear complexity of $ s(a, b, c) $ is large enough and stable in most cases.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference16 articles.
1. T. Cusick, C. Ding, A. Renvall, Stream ciphers and number theory, Amsterdam: Elsevier, 2004.
2. C. Ding, G. Xiao, W. Shan, The stability theory of stream ciphers, Berlin: Springer, 1991. http://dx.doi.org/10.1007/3-540-54973-0
3. M. Stamp, C. Martin, An algorithm for the $k$-error linear complexity of binary sequences with period $2^n$, IEEE Trans. Inform. Theory, 39 (1993), 1398–1401. http://dx.doi.org/10.1109/18.243455
4. R. Blahut, Transform techniques for error control codes, IBM J. Res. Dev., 23 (1979), 299–315. http://dx.doi.org/10.1147/rd.233.0299
5. F. MacWilliams, N. Sloane, The theory of error-correcting codes, Amsterdam: Elsevier, 1977.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献