Affiliation:
1. Department of Mathematics, Bansomdejchaopraya Rajabhat University, Itsaraphap 15, 10600 Bangkok, Thailand
2. Department of Mathematics, Srinakharinwirot University, Sukhumvit 23, 10110 Bangkok, Thailand
Abstract
<abstract><p>Let $ G $ be a connected graph of order $ n $. The representation of a vertex $ v $ of $ G $ with respect to an ordered set $ W = \{w_1, w_2, ..., w_k\} $ is the $ k $-vector $ r(v|W) = (d(v, w_1), d(v, w_2), ..., d(v, w_k)) $, where $ d(v, w_i) $ represents the distance between vertices $ v $ and $ w_i $ for $ 1\leq i\leq k $. An ordered set $ W $ is called a connected local resolving set of $ G $ if distinct adjacent vertices have distinct representations with respect to $ W $, and the subgraph $ \langle W\rangle $ induced by $ W $ is connected. A connected local resolving set of $ G $ of minimum cardinality is a connected local basis of $ G $, and this cardinality is the connected local dimension $ \mathop{\text{cld}}(G) $ of $ G $. Two vertices $ u $ and $ v $ of $ G $ are true twins if $ N[u] = N[v] $. In this paper, we establish a fundamental property of a connected local basis of a connected graph $ G $. We analyze the connected local dimension of a connected graph without a singleton true twin class and explore cases involving singleton true twin classes. Our investigation reveals that a graph of order $ n $ contains at most two non-singleton true twin classes when $ \mathop{\text{cld}}(G) = n-2 $. Essentially, our work contributes to the characterization of graphs with a connected local dimension of $ n-2 $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference17 articles.
1. A. Ali, G. Chartrand, P. Zhang, Irregularity in graphs, Cham: Springer, 2021. http://dx.doi.org/10.1007/978-3-030-67993-4
2. G. Chartrand, L. Eroh, M. Johnson, O. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. http://dx.doi.org/10.1016/S0166-218X(00)00198-0
3. F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Comb., 2 (1976), 191–195.
4. B. Hulme, A. Shiver, P. Slater, FIRE: a subroutine for fire protection network analysis, New Mexico: Sandia National Laboratories, 1981. http://dx.doi.org/10.2172/5313603
5. B. Hulme, A. Shiver, P. Slater, Computing minimum cost fire protection (PROTECT computer code), New Mexico: Sandia National Laboratories, 1982.