Abstract
<abstract><p>The major objectives of this research article are to introduce the notion of ($ \alpha, \psi $)-contraction in the context of $ \mathfrak{F} $-bipolar metric space and establish fixed point theorems. In this way, coupled fixed point results are obtained by applying the leading theorems. Some non-trivial examples are also furnished to show the validity of established results. As applications of the main result, we investigate the solution of an integral equation and a homotopy problem.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference25 articles.
1. S. Banach, Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181
2. M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. https://doi.org/10.1007/BF03018603
3. I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
4. S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5–11.
5. A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献