Investigation of soliton solutions to the truncated M-fractional (3+1)-dimensional Gross-Pitaevskii equation with periodic potential

Author:

Qawaqneh Haitham1,Altalbe Ali23,Bekir Ahmet4,Tariq Kalim U.5

Affiliation:

1. Department of Mathematics, Faculty of Science and Information Technology, Al-Zaytoonah University of Jordan, Amman 11733, Jordan

2. Department of Computer Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia

3. Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia

4. Neighbourhood of Akcaglan, Imarli Street, Number: 28/4, 26030, Eskisehir-Turkey

5. Department of Mathematics, Mirpur University of Science and Technology, Mirpur, Pakistan

Abstract

<p>This research explores some modernistic soliton solutions to the (3+1)-dimensional periodic potential the Gross–Pitaevskii equation with a truncated M-fractional derivative plays a significant role in Bose–Einstein condensation, which describes the dynamics of the condensate wave function. The obtained results include trigonometric, hyperbolic trigonometric and exponential function solutions. Three techniques named: the $ \exp_a $ function method, the Sardar sub-equation method, and the extended $ (G'/G) $-expansion approach are employed to achieve a variety of new solutions for the governing model. More comprehensive information about the dynamical representation of some of the solutions is being presented by visualizing the 2D, 3D and contour plots. This work reveals a number of new types of traveling-wave solutions, such as the double periodic singular, the periodic singular, the dark singular, the dark kink singular, the periodic solitary singular, and the singular soliton solutions. These novel solutions are not the same as those that were previously studied for this governing equation. The presented techniques demonstrate clarity, efficacy, and simplicity, revealing their relevance to diverse sets of dynamic and static nonlinear equations pertaining to evolutionary events in computational physics, in addition to other real-world applications and a wide range of study fields for addressing a variety of other nonlinear fractional models that hold significance in the fields of applied science and engineering.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3