Author:
Li Yongkun, ,Huang Xiaoli,Wang Xiaohui
Abstract
<abstract><p>We consider the existence and stability of Weyl almost periodic solutions for a class of quaternion-valued shunting inhibitory cellular neural networks with time-varying delays. In order to overcome the incompleteness of the space composed of Weyl almost periodic functions, we first obtain the existence of a bounded continuous solution of the system under consideration by using the fixed point theorem, and then prove that the bounded solution is Weyl almost periodic by using a variant of Gronwall inequality. Then we study the global exponential stability of the Weyl almost periodic solution by using the inequality technique. Even when the system we consider degenerates into a real-valued one, our results are new. A numerical example is given to illustrate the feasibility of our results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献