Abstract
<abstract><p>Let $ N $ be a left $ R $-module with the endomorphism ring $ S = \text{End}(_{R}N) $. Given two cardinal numbers $ \alpha $ and $ \beta $ and a matrix $ A\in S^{\beta\times\alpha} $, $ N $ is called flat relative to $ A $ in case, for each $ x\in l_{N^{(\beta)}}(A) = \{u\in N^{(\beta)} \mid uA = 0\} $, there are a positive integer $ k $, $ y\in N^{k} $ and a $ k\times \beta $ row-finite matrix $ C $ over $ S $ such that $ CA = 0 $ and $ x = yC $. It is shown that $ N_{S} $ is flat relative to a matrix $ A $ if and only if $ l_{N^{(\beta)}}(A) $ is generated by $ N $. $ S $ is called left coherent relative to $ A $ if Ker$ (_{S}S^{(\beta)}\to _{S}S^{(\beta)}A) $ is finitely generated. It is shown that $ S $ is left coherent relative to $ A $ if and only if Hom$ _{R}(N, l_{N^{n}}(A)) $ is a finitely generated left $ S $-module if and only if $ l_{N^{n}}(A) $ has an add$ (N) $-precover (add$ (N) $ denotes the category of all direct summands of finite direct sums of copies of $ _{R}N $). Regarding applications, new necessary and sufficient conditions for epic (monic, having the unique mapping property) add$ (N) $-precovers of $ l_{N^{(\beta)}}(A) $ are investigated. Also, some new characterizations of left $ n $-semihereditary rings and von Neumann regular rings are given.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference27 articles.
1. L. X. Mao, $(m, n)$-injective and $(m, n)$-coherent endomorphism rings of modules, J. Algebra Appl., 19 (2020), 993–1008. http://doi.org/10.1142/S0219498820500486
2. L. Angeleri-H$\ddot{u}$gel, Endocoherent modules, Pac. J. Math., 212 (2003), 1–11. http://doi.org/10.2140/pjm.2003.212.1
3. G. Azumaya, Finite splitness and finite projectivity, J. Algebra, 106 (1987), 114–134. http://dx.doi.org/10.1016/0021-8693(87)90024-X
4. N. Q. Ding, J. L. Chen, Relative coherence and preenvelopes, Manuscripta Math., 81 (1993), 243–262. http://doi.org/10.1007/BF02567857
5. X. X. Zhang, J. L. Chen, Homological properties of modules characterized by matrices, J. Southeast Univ., 21 (2005), 239–243.