Abstract
<abstract>
<p>While chaotic systems have found extensive applications across diverse scientific domains due to their inherent advantages, they often degrade into cyclic patterns when simulated on hardware with limited computational precision. This results in a pronounced decline in properties related to chaotic dynamics. To address this issue, we introduce the delayed exponent coupled chaotic map (DECCM). This model is designed to enhance the chaotic dynamics of the original map, especially at lower computational precisions. Additionally, DECCM can transform any proficient 1-dimensional seed map into an <italic>N</italic>-dimensional chaotic map. Extensive simulation and performance tests attest to the robust chaotic characteristics of our approach. Furthermore, DECCM holds distinct advantages over premier algorithms, particularly in period analysis experiments. We also introduce various seed maps into DECCM to present 2D and 3D examples, ensuring their generalization through relevant performance evaluations.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference33 articles.
1. S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, C. Wang, et al., Asynchronous updating Boolean network encryption algorithm, IEEE T. Circ. Syst. Vid., 33 (2023), 4388–4400. https://doi.org/10.1109/TCSVT.2023.3237136
2. S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, C. Wang, et al., A 3D model encryption scheme based on a cascaded chaotic system, Signal Process., 202 (2023), 108745. https://doi.org/10.1016/j.sigpro.2022.108745
3. A. Zand, M. Tavazoei, N. Kuznetsov, Chaos and its degradation-promoting-based control in an antithetic integral feedback circuit, IEEE Control Systems Letters, 6 (2021), 1622–1627. https://doi.org/10.1109/LCSYS.2021.3129320
4. A. Altland, J. Sonner, Late time physics of holographic quantum chaos, SciPost Phys., 11 (2021), 034. https://doi.org/10.21468/SciPostPhys.11.2.034
5. H. Abarbanel, R. Brown, J. Sidorowich, L. Tsimring, The analysis of observed chaotic data in physical systems, Rev. Mod. Phys., 65 (1993), 1331. https://doi.org/10.1103/RevModPhys.65.1331