A modified optimal control for the mathematical model of dengue virus with vaccination

Author:

Pongsumpun Puntipa1,Lamwong Jiraporn2,Tang I-Ming3,Pongsumpun Puntani1

Affiliation:

1. Department of Mathematics, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

2. Department of Applied Basic Subjects, Thatphanom College, Nakhon Phanom University, Nakhon Phanom 48000, Thailand

3. Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Abstract

<abstract> <p>The dengue viruses (of which there are four strains) are the causes of three illnesses of increasing severity; dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Recently, dengue fever has reached epidemic proportion in several countries. Strategies or preventative methods have to be developed to combat these epidemics. This can be done by development of vaccines or by preventing the transmission of the virus. The latter approach could involve the use of mosquito nets or insecticide spraying. To determine which strategy would work, we test the strategy using mathematical modeling to simulate the effects of the strategy on the dynamics of the transmission. We have chosen the Susceptible-Exposed-Infected-Recovered (SEIR) model and the SusceptibleExposed-Infected (SEI) model to describe the human and mosquito populations, repectively. We use the Pontryagin's maximum principle to find the optimal control conditions. A sensitivity analysis revealed that the transmission rate $ ({\gamma }_{h}, {\gamma }_{v}) $, the birth rate of human population ($ {\mu }_{h} $), the constant recruitment rate of the vector population ($ A $) and the total human population ($ {N}_{h} $) are the most influential factors affecting the disease transmission. Numerical simulations show that the optimal controlled infective responses, when implemented, cause the convergence to zero to be faster than that in uncontrolled cases.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference53 articles.

1. Combating Dengue Outbreak and Addressing Overlapping Challenges with COVID-19, World Health Organization (WHO), 2023. Available from: https://www.who.int/thailand/news/detail/30-06-2023-combating-dengue-outbreak-and-addressing-overlapping-challenges-with-covid-19.

2. S. Zaheer, M. J. Tahir, I. Ullah, A. Ahmed, S. M. Saleem, S. Shoib, et al., Dengue outbreak in the times of COVID-19 pandemic: Common myths associated with the dengue, Ann. Med. Surg., 81 (2022), 104535. https://doi.org/10.1016/j.amsu.2022.104535

3. A. Tangsathapornpong, U. Thisyakorn, Dengue amid COVID-19 pandemic, PLOS Glob Public Health, 3 (2023), e0001558. https://doi.org/10.1371/journal.pgph.0001558

4. Dengue and severe dengue, World Health Organization (WHO), 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

5. Ten threats to global health in 2019, World Health Organization (WHO), 2023. Available from: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3