Author:
Samei Mohammad Esmael, ,Karimi Lotfollah,Kaabar Mohammed K. A., , ,
Abstract
<abstract><p>In the research work, we discuss a multi-singular pointwise defined fractional $ q $–integro-differential equation under some boundary conditions via the Riemann-Liouville $ q $–integral and Caputo fractional $ q $–derivatives. New existence results rely on the $ \alpha $-admissible map and fixed point theorem for $ \alpha $-$ \mathtt{ψ} $-contraction map. At the end, we present an example with application and some algorithms to illustrate the primary effects.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference46 articles.
1. T. Abdeljawad, J. Alzabut, D. Baleanu, A generalized $q$–fractional gronwall inequality and its applications to nonlinear delay $q$–fractional difference systems, J. Inequal. Appl., 2016 (2016), 240. https://doi.org/10.1186/s13660-016-1181-2
2. C. R. Adams, The general theory of a class of linear partial $q$–difference equations, T. Am. Math. Soc., 26 (1924), 283–312. https://doi.org/10.2307/1989141
3. R. P. Agarwal, Certain fractional $q$–integrals and $q$–derivatives, Mathematical Proceedings of the Cambridge Philosophical Society, 66 (1965), 365–370. https://doi.org/10.1017/S0305004100045060
4. R. P. Agarwal, D. O'Regan, S. Staněk, Positive solutions for Dirichlet problem of singular nonlinear fractional differential equations, J. Math. Anal. Appl., 371 (2010), 57–68. https://doi.org/10.1016/j.jmaa.2010.04.034
5. B. Ahmad, S. Etemad, M. Ettefagh, S. Rezapour, On the existence of solutions for fractional $q$–difference inclusions with $q$–antiperiodic boundary conditions, Bull. Math. Soc. Sci. Math. Roumanie, 59 (2016), 119–134.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献