Duals of Gelfand-Shilov spaces of type $ K\{M_p\} $ for the Hankel transformation

Author:

García-Baquerín Samuel1,Marrero Isabel2

Affiliation:

1. Escuela de Máster y Doctorado, Universidad de La Rioja, 2 Luis de Ulloa St, 26004 Logroño, La Rioja, Spain

2. Departamento de Análisis Matemático and Instituto de Matemáticas y Aplicaciones (IMAULL), Universidad de La Laguna, P.O. Box 456, 38200 La Laguna (Tenerife), Canary Islands, Spain

Abstract

<abstract><p>For $ \mu \geq-\frac{1}{2} $, and under appropriate conditions on the sequence $ \{M_p\}_{p = 0}^{\infty} $ of weights, the elements, the (weakly, weakly<sup>*</sup>, strongly) bounded subsets, and the (weakly, weakly<sup>*</sup>, strongly) convergent sequences in the dual of a space $ \mathcal{K}_\mu $ of type Hankel-$ K\{M_p\} $ can be represented by distributional derivatives of functions and measures in terms of iterated adjoints of the differential operator $ x^{-1} D_x $ and the Bessel operator $ S_\mu = x^{-\mu-\frac{1}{2}} D_x x^{2 \mu+1} D_x x^{-\mu-\frac{1}{2}} $. In this paper, such representations are compiled, and new ones involving adjoints of suitable iterations of the Zemanian differential operator $ N_\mu = $ $ x^{\mu+\frac{1}{2}} D_x x^{-\mu-\frac{1}{2}} $ are proved. Prior to this, new descriptions of the topology of the space $ \mathcal{K}_\mu $ are given in terms of the latter iterations.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3