Static term structure of interest rate construction with tension interpolation splines

Author:

Qin Xiangbin1,Zhu Yuanpeng2

Affiliation:

1. School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China; qinxiangbin@ctbu.edu.cn

2. School of Mathematics, South China University of Technology, Guangzhou 510640, China

Abstract

<abstract><p>Traditional theories of term structure of interest rate consist of four major classical theories, including Pure Expectation Theory, Liquidity Preference Theory, Preferred Habitat Theory and Market Segmentation Theory. However, they cannot be well interpreted by the traditional static term structure of interest rate methods such as polynomial spline and exponential spline. To address problems on low precision and weak stability of traditional methods in constructing static interest rate term structure curve, in this paper, we introduce the tension interpolation spline based on a fourth-order differential equation with local tension parameters calculated by Generalized Reduced Gradient (GRG) algorithm. Our primary focus is to illustrate its better prediction effect and stability with an empirical study conducted using datum of treasury bonds. Then, we divided the datum into intra-sample datum for estimating tension parameters and out-of-sample datum for evaluating their robustness of predicting stochastics collected from Shanghai Stock Exchange on $ {2^{{\rm{nd}}}} $ February, 2019. According to the principle of total least squares and total least absolute deviations, the result shows that the tension interpolation spline model has better precision and stronger stability in prediction of out-of-sample treasury bonds prices compared with the model established by polynomial spline and exponential spline. In addition, it can better explain the Liquidity Preference Theory, which confirms that it is suitable for constructing the static term structure of interest rates in the securities exchange market.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3