On a shape derivative formula for star-shaped domains using Minkowski deformation

Author:

Boulkhemair Abdesslam1,Chakib Abdelkrim2,Sadik Azeddine12

Affiliation:

1. Laboratoire de Mathématiques Jean Leray, UMR6629 CNRS, UFR Sciences et Techniques, 2 rue de la Houssinière, BP92208, 44322 Nantes, France

2. Applied Mathematics Team, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco

Abstract

<abstract><p>We consider the shape derivative formula for a volume cost functional studied in previous papers where we used the Minkowski deformation and support functions in the convex setting. In this work, we extend it to some non-convex domains, namely the star-shaped ones. The formula happens to be also an extension of a well-known one in the geometric Brunn-Minkowski theory of convex bodies. At the end, we illustrate the formula by applying it to some model shape optimization problem.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference22 articles.

1. G. Allaire, Conception optimale de structures, Berlin: Springer, 2007. http://dx.doi.org/10.1007/978-3-540-36856-4

2. A. Boulkhemair, On a shape derivative formula in the Brunn-Minkowski theory, SIAM J. Control Optim., 55 (2017), 156–171. http://dx.doi.org/10.1137/15M1015844

3. A. Boulkhemair, A. Chakib, On a shape derivative formula with respect to convex domains, J. Convex Anal., 21 (2014), 67–87.

4. A. Boulkhemair, A. Chakib, Erratum: on a shape derivative formula with respect to convex domains, J. Convex Anal., 22 (2015), 901–903.

5. A. Boulkhemair, A. Chakib, A. Nachaoui, A. Niftiyev, A. Sadik, On a numerical shape optimal design approach for a class of free boundary problems, Comput. Optim. Appl., 77 (2020), 509–537. http://dx.doi.org/10.1007/s10589-020-00212-z

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3