Author:
Pan Mingying,Feng Xiangchu
Abstract
<abstract><p>Analysis of the accuracy of estimated parameters is an important research direction. In the article, the maximum likelihood estimation is used to estimate CMOS image noise parameters and Fisher information is used to analyse their accuracy. The accuracies of the two parameters are different in different situations. Two applications of it are proposed in this paper. The first one is a guide to image representation. The standard pixel image has higher accuracy for signal-dependent noise and higher error for additive noise, in contrast to the normalised pixel image. Therefore, the corresponding image representation is chosen to estimate the noise parameters according to the dominant noise. The second application of the conclusions is a guide to algorithm design. For standard pixel images, the error of additive noise estimation will largely affect the final denoising result if two kinds of noise are removed simultaneously. Therefore, a divide-and-conquer hybrid total least squares algorithm is proposed for CMOS image restoration. After estimating the parameters, the total least square algorithm is first used to remove the signal-dependent noise of the image. Then, the additive noise parameters of the processed image are updated by using the principal component analysis algorithm, and the additive noise in the image is removed by BM3D. Experiments show that this hybrid method can effectively avoid the problems caused by the inconsistent precision of the two kinds of noise parameters. Compared with the state-of-art methods, the new method shows certain advantages in subjective visual quality and objective image restoration indicators.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference60 articles.
1. C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, Sixth international conference on computer vision (IEEE Cat. No. 98CH36271), (1998), 839–846. http://dx.doi.org/10.1109/ICCV.1998.710815
2. S. Osher, M. Burger, D. Goldfarb, J. Xu, E. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Model. Sim., 4 (2005), 460–489. http://dx.doi.org/10.1137/040605412
3. Y. zhang, S. Li, B. Wu, S. Du, Image multiplicative denoising using adaptive Euler's elastica as the regularization, J. Sci. Comput., 90 (2022), 69. http://dx.doi.org/10.1007/s10915-021-01721-7
4. L. Rudin, P. L. Lions, S. Osher, Geometric level set methods in imaging, vision, and graphics, New York, USA: Springer, 2003. http://dx.doi.org/10.1007/0-387-21810-6_6
5. J. Shi, S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294–321. http://dx.doi.org/10.1137/070689954
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献