Author:
Wang Huanhuan,Ouyang Kexin,Lu Huiqin
Abstract
<abstract><p>The aim of this paper is to study the existence of ground states for a class of fractional Kirchhoff type equations with critical or supercritical nonlinearity</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ (a+b\int_{\mathbb{R}^{3}}|(-\bigtriangleup)^{\frac{s}{2}}u|^{2}dx)(-\bigtriangleup)^{s}u = \lambda u +|u|^{q-2 }u+\mu|u|^{p-2}u, \ x\in\mathbb{R}^{3}, $\end{document} </tex-math></disp-formula></p>
<p>with prescribed $ L^{2} $-norm mass</p>
<p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \int_{\mathbb{R}^{3}}u^{2}dx = c^{2} $\end{document} </tex-math></disp-formula></p>
<p>where $ s\in(\frac{3}{4}, \ 1), \ a, b, c > 0, \ \frac{6+8s}{3} < q < 2_{s}^{\ast}, \ p\geq 2^{\ast}_{s}\ (2^{\ast}_{s} = \frac{6}{3-2s}), \ \mu > 0 $ and $ \lambda\in \mathbb{R} $ as a Langrange multiplier. By combining an appropriate truncation argument with Moser iteration method, we prove that the existence of normalized solutions for the above equation when the parameter $ \mu $ is sufficiently small.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference26 articles.
1. D. Applebaum, L$\acute{e}$vy processes and stochastic calculus, 2 Eds., Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511809781
2. D. Applebaum, L$\acute{e}$vy processes-from probability to finance and quantum groups, Notices of the AMS, 51 (2004), 1336–1347.
3. R. Servadei, E. Valdinoci, Fractional Laplacian equations with critivcal Sobolev exponent, Rev. Mat. Complut., 28 (2015), 655–676. https://doi.org/10.1007/s13163-015-0170-1
4. H. Luo, Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var., 59 (2020), 143. https://doi.org/10.1007/s00526-020-01814-5
5. H. Lu, X. Zhang, Positive solution for a class of nonlocal elliptic equations, Appl. Math. Lett., 88 (2019), 125–131. https://doi.org/10.1016/j.aml.2018.08.019
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献