Abstract
<abstract><p>We consider the preconditioned iterative methods for the linear systems arising from the finite volume discretization of spatial balanced fractional diffusion equations where the fractional differential operators are comprised of both Riemann-Liouville and Caputo fractional derivatives. The coefficient matrices of the linear systems consist of the sum of tridiagonal matrix and Toeplitz-times-diagonal-times-Toeplitz matrix. We propose using symmetric approximate inverse preconditioners to solve such linear systems. We show that the spectra of the preconditioned matrices are clustered around 1. Numerical examples, for both one and two dimensional problems, are given to demonstrate the efficiency of the new preconditioners.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献