Author:
Yue Ye, ,Farid Ghulam,Demirel Ayșe Kübra,Nazeer Waqas,Zhao Yinghui, , ,
Abstract
<abstract><p>In this paper, $ k $-fractional integral operators containing further extension of Mittag-Leffler function are defined firstly. Then, the first and second version of Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals are obtained. Finally, by using these generalized $ k $-fractional integrals containing Mittag-Leffler functions, results for $ p $-convex functions are obtained. The results for convex functions can be deduced by taking $ p = 1 $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference18 articles.
1. M. Andric, G. Farid, J. Pecaric, A further extension of Mittag-Leffler function, Fract. Calculus Appl. Anal., 21 (2018), 1377–1395. doi: 10.1515/fca-2018-0072.
2. G. Farid, A unified integral operator and further its consequences, Open J. Math. Anal., 4 (2020), 1–7. doi: 10.30538/psrp-oma2020.0047.
3. M. Yussouf, G. Farid, K. A. Khan, C. Y. Jung, Hadamard and Fejér-Hadamard inequalities for further generalized fractional integrals involving Mittag-Leffler functions, J. Math., 2021 (2021), 5589405. doi: 10.1155/2021/5589405.
4. C. P. Niculescu, L. E. Persson, Convex functions and their applications, A contemporary approach, New York, Springer, 2006.
5. I. Iscan, Ostrowski type inequalities for $p$-convex functions, NTMSCI, 4 (2016), 140–150. doi: 10.20852/NTMSCI.2016318838.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献