Author:
You Xuexiao, ,Hezenci Fatih,Budak Hüseyin,Kara Hasan,
Abstract
<abstract><p>Fractional versions of Simpson inequalities for differentiable convex functions are extensively researched. However, Simpson type inequalities for twice differentiable functions are also investigated slightly. Hence, we establish a new identity for twice differentiable functions. Furthermore, by utilizing generalized fractional integrals, we prove several Simpson type inequalities for functions whose second derivatives in absolute value are convex.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference43 articles.
1. M. Alomari, M. Darus, S. Dragomir, New inequalities of Simpson's type for $\mathit{s}$-convex functions with applications, Res. Rep. Coll., 12 (2009), 9.
2. M. Sarikaya, E. Set, M. Özdemir, On new inequalities of Simpson's type for $s$-convex functions Comput. Math. Appl., 60 (2010), 2191–2199. doi: 10.1016/j.camwa.2010.07.033.
3. T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions, Appl. Math. Comput., 293 (2017), 358–369. doi: 10.1016/j.amc.2016.08.045.
4. İ. İşcan, Hermite-Hadamard, Simpson-like type inequalities for differentiable harmonically convex functions, J. Math., 2014 (2014), 346305. doi: 10.1155/2014/346305.
5. M. Matloka, Some inequalities of Simpson type for h-convex functions via fractional integrals, Abstr. Appl. Anal., 2015 (2015), 956850. doi: 10.1155/2015/956850.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献