Affiliation:
1. Department of Mathematics, Shandong University of Aeronautics, Shandong, 256603, China
2. School of Computer Science and Technology, Tianjin Key Laboratory of Autonomous Intellgience Technology and System. Tiangong University, Tianjin, 300387, China
Abstract
<p>In the quantum era, the advent of quantum computers poses significant threats to the security of current cryptosystems. Therefore, designing quantum-resistant cryptoschemes becomes important to guarantee information security. This work concentrates on the development of the post-quantum public key encryption (PKE) scheme. Non-commutative cryptography (NCC) has entered the field of post-quantum cryptography. We utilize the TSPEM problem with asymmetric structures (which serve as a potential candiate for resisting quantum attacks) to construct two PKE schemes which are demonstrated to be CPA security under the DTSPEM assumption. By representing the plaintext as a matrix, these schemes can effectively encrypt a significant amount of information in a single operation. Assuming an equal amount of messages for encryption, the proposed schemes acheive superior efficiency compared to existing PKE schemes. Structurally, our systems exhibit a level of synchronization and coexistence due to the distinct public keys $ (P) $ and ciphertexts $ (C_{1}) $. The efficiency analysis is conducted by comparing known schemes from the aspect of specific cryptographic indicators. Generally, the proposed ones offer several advantages including provable security, high efficiency, potential quantum-resistant, and relative ease of implementation; along with synchronization and coexistence. Our investigation has established the feasibility of constructing PKE schemes based on the TSPEM problem, specifically for asymmetric communication scenarios. The preliminary results pave the way for further exploration of the TSPEM problem$ ' $s potential in developing other cryptosystems suitable for quantum computing environments.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference23 articles.
1. L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, ACM, (1996), 212–219. https://doi.org/10.1145/237814.237866
2. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review, (1999), 303–332. https://doi.org/10.1137/S0036144598347011
3. O. Regev, On lattices, learning with errors, random linear codes and cryptography, Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, May, (2005), 84–93. https://doi.org/10.1145/1060590.1060603
4. H. Z. Wang, H. G. Zhang, Z. Y. Wang, M. Tang, Extended multivariate public key cryptosystems with secure encryption function, Sci. China Inform. Sci., 54 (2011), 1161–1171. https://doi.org/10.1007/s11432-011-4262-3
5. M. Eftekhari, A diffie-hellman key exchange protocol using matrices over non-commutative rings, Groups Complex. Crypt., 4 (2012), 167–176. https://doi.org/10.1515/gcc-2012-0001