Abstract
<abstract><p>We are concerned with the problem with Minkowski-curvature operator on an exterior domain</p>
<p><disp-formula>
<label/>
<tex-math id="FE46">
\begin{document}
$
\begin{align} \left\{\begin{array}{ll} -\text{div}\Big(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\Big) = \lambda K(|x|)\frac{f(u)}{u^\gamma}\ \ \ &\text{in}\ B^c,\\[2ex] \frac{\partial u}{\partial n}|_{\partial B^c} = 0, \ \ \lim\limits_{|x|\to\infty}u(x) = 0, \end{array} \right. \end{align} \quad\quad\quad\quad\quad (P)
$
\end{document}
</tex-math>
</disp-formula></p>
<p>where $ 0\leq\gamma < 1 $, $ B^c = \{x\in \mathbb{R}^N: |x| > R\} $ is a exterior domain in $ \mathbb{R}^N $, $ N > 2 $, $ R > 0 $, $ K\in C([R, \infty), (0, \infty)) $ is such that $ \int_R^\infty rK(r)dr < \infty $, the function $ f:[0, \infty)\to (0, \infty) $ is a continuous function such that $ \lim\limits_{s\to\infty}\frac{f(s)}{s^{\gamma+1}} = 0 $ and $ \lambda > 0 $ is a parameter. We show that problem $ (P) $ has at least one positive radial solution for all $ \lambda > 0 $. The proof of our main result is based upon the method of sub and super solutions.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)