Investigation of SEIR model with vaccinated effects using sustainable fractional approach for low immune individuals

Author:

Alsaud Huda1,Kulachi Muhammad Owais2,Ahmad Aqeel2,Inc Mustafa3,Taimoor Muhammad2

Affiliation:

1. Department of Mathematics, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia

2. Department of Mathematics, Ghazi University, D. G. Khan 32200, Pakistan

3. Department of Mathematics, Firat University, Elazig 23119, Turkiye

Abstract

<abstract><p>Mathematical formulations are crucial in understanding the dynamics of disease spread within a community. The objective of this research is to investigate the SEIR model of SARS-COVID-19 (C-19) with the inclusion of vaccinated effects for low immune individuals. A mathematical model is developed by incorporating vaccination individuals based on a proposed hypothesis. The fractal-fractional operator (FFO) is then used to convert this model into a fractional order. The newly developed SEVIR system is examined in both a qualitative and quantitative manner to determine its stable state. The boundedness and uniqueness of the model are examined to ensure reliable findings, which are essential properties of epidemic models. The global derivative is demonstrated to verify the positivity with linear growth and Lipschitz conditions for the rate of effects in each sub-compartment. The system is investigated for global stability using Lyapunov first derivative functions to assess the overall impact of vaccination. In fractal-fractional operators, fractal represents the dimensions of the spread of the disease, and fractional represents the fractional ordered derivative operator. We use combine operators to see real behavior of spread as well as control of COVID-19 with different dimensions and continuous monitoring. Simulations are conducted to observe the symptomatic and asymptomatic effects of the corona virus disease with vaccinated measures for low immune individuals, providing insights into the actual behavior of the disease control under vaccination effects. Such investigations are valuable for understanding the spread of the virus and developing effective control strategies based on justified outcomes.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3