Abstract
<abstract><p>This paper is concerned with the following modified Kirchhoff type problem</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\left(a+b\int_{\mathbb{R}^3}|\nabla u|^2\right)\Delta u-u\Delta (u^2)-\lambda u=|u|^{p-2}u, \; \; \; x\in \mathbb{R}^3, \end{align*} $\end{document} </tex-math></disp-formula></p>
<p>where $ a, b > 0 $ are constants and $ \lambda\in \mathbb R $. When $ p=\frac{16}{3} $, we prove that the existence of normalized solution with a prescribed $ L^2 $-norm for the above equation by applying constrained minimization method. Moreover, when $ p\in\left(\frac{10}{3}, \frac{16}{3}\right) $, we prove the existence of mountain pass type normalized solution for the above modified Kirchhoff equation by using the perturbation method. And the asymptotic behavior of normalized solution as $ b\rightarrow 0 $ is analyzed. These conclusions extend some known ones in previous papers.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference35 articles.
1. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
2. S. Bernstein, Sur une classe d'$\acute{e}$quations fonctionelles aux d$\acute{e}$riv$\acute{e}$es partielles, Bull. Acad. Sci. URSS. S$\acute{e}$r. Math. (Izvestia Akad. Nauk SSSR), 4 (1940), 17–26.
3. S. I. Poho$\check{z}$aev, A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.), 96 (1975), 152–166. https://doi.org/10.1136/vr.96.8.166
4. J. L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proceedings of International Symposium, Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), In: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3
5. A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. , 348 (1996), 305–330. https://doi.org/10.1090/S0002-9947-96-01532-2