Fourth-order neutral dynamic equations oscillate on timescales with different arguments

Author:

Moumen Abdelkader1,Cherif Amin Benaissa2,Ladrani Fatima Zohra3,Bouhali Keltoum4,Bouye Mohamed5

Affiliation:

1. Department of Mathematics, College of Science, University of Ha'il, Ha'il 55473, Saudi Arabia; Email: mo.abdelkader@uoh.edu.sa

2. Department of Mathematics, Faculty of Mathematics and Informatics, University of Science and Technology of Oran Mohamed-Boudiaf (USTOMB), El Mnaouar, BP 1505, Bir El Djir, Oran, 31000, Algeria; Email: amin.benaissacherif@univ-usto.dz

3. Department of Exact Sciences, Higher Training Teacher's School of Oran Ammour Ahmed (ENSO), Oran, 31000, Algeria; Email: f.z.ladrani@gmail.com

4. Department of Mathematics, College of Science, Qassim University, Saudi Arabia; Email: k.bouhali@qu.edu.sa

5. Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Email: mbmahmad@kku.edu.sa

Abstract

<p>The theory of neutral dynamic equations on timescales was based to unify the study of differential and difference equations. The article described several oscillating criteria that will be developed for fourth-order-neutral dynamic equations in the presence of various types of arguments on timescales. The goal was to establish all necessary conditions for the solutions of these models to be oscillatory. To construct observation values, ideas from [Y. Sui and Z. Han, Oscillation of second order neutral dynamic equations with deviating arguments on time scales, <italic>Adv. Differ. Equ.</italic>, 10 (2018)] were used. The research seeked to provide sufficient criteria that ensured the oscillation of solutions to these complex dynamic equations using a technique Riccati transformations generalized, emphasizing their importance in the study of oscillatory processes within various scientific and engineering contexts.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference19 articles.

1. C. W. J. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica, 37 (1969), 424. https://doi.org/10.2307/1912791

2. B. Gourevitch, R. L. B. Jeanne, G. Faucon, Linear and nonlinear causality between signals: Methods, examples and neurophysiological application, Biol. Cybern., 95 (2006), 349–369. https://doi.org/10.1007/s00422-006-0098-0

3. S. Hilger, Ein Maßkettenak$\ddot{u}$l mit anwendung auf zentrumsannigfaltigkeiten, PhD thesis, Universität Würzburg, 1988.

4. M. Bohner, A. Peterson, Dynamic equations on timescales, an introduction with applications, Boston: Birkäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1

5. M. Bohner, A. Peterson, Advences in dynamic equations on time scales, Boston: Springer Science & Business Media, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3