Threshold analysis of an algae-zooplankton model incorporating general interaction rates and nonlinear independent stochastic components

Author:

Sabbar Yassine1,Raezah Aeshah A.2

Affiliation:

1. MAIS Laboratory, MAMCS Group, FST Errachidia, Moulay Ismail University of Meknes, P.O. Box 509, Errachidia 52000, Morocco

2. Department of Mathematics, Faculty of Science King Khalid, University Abha, 62529, Saudi Arabia

Abstract

<abstract><p>The stochastic nature of ecological systems is fundamental to their modeling and understanding. In this paper, we introduce a comprehensive algae-zooplankton model that incorporates general interaction rate and second-order independent stochastic components. Our model's perturbation component encompasses both white noise and jump processes, enabling us to account for various sources of variability and capture a wide range of potential fluctuations in the system. By utilizing an auxiliary equation, we establish a global threshold for the stochastic system, distinguishing between scenarios of extinction and ergodicity. This threshold serves as a critical determinant of the system's long-term behavior and sheds light on the delicate balance between population persistence and decline in ecological communities. To elucidate the impact of noise on the dynamics of algae and zooplankton, we present a series of numerical illustrations. Through these simulations, we highlight how noise influences not only the extinction time but also the shape of the stationary distribution. Our findings underscore the significant role of stochasticity in shaping ecological dynamics and emphasize the importance of considering noise effects in ecological modeling and management practices.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3