Author:
Shi Jincheng, ,Zhang Yan,Cai Zihan,Liu Yan, ,
Abstract
<abstract><p>In this paper, we study global existence and blow-up of solutions to the viscous Moore-Gibson-Thompson (MGT) equation with the nonlinearity of derivative-type $ |u_t|^p $. We demonstrate global existence of small data solutions if $ p > 1+4/n $ ($ n\leq 6 $) or $ p\geq 2-2/n $ ($ n\geq 7 $), and blow-up of nontrivial weak solutions if $ 1 < p\leq 1+1/n $. Deeply, we provide estimates of solutions to the nonlinear problem. These results complete the recent works for semilinear MGT equations by <sup>[<xref ref-type="bibr" rid="b4">4</xref>]</sup>.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference17 articles.
1. O. V. Abramov, High-intensity ultrasonics: Theory and industrial applications, CRC Press, 1998. doi: 10.1201/9780203751954.
2. W. H. Chen, On the Cauchy problem for the Jordan-Moore-Gibson-Thompson equation in the dissipative case, 2021, arXiv: 2105.06112.
3. W. H. Chen, On the Cauchy problem for acoustic waves in hereditary fluids: Decay properties and inviscid limits, 2021, arXiv: 2106.06194
4. W. H. Chen, R. Ikehata, The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case, J. Differ. Equ., 292 (2021), 176–219.
5. W. H. Chen, A. Palmieri, Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part, Z. Angew. Math. Phys., 70 (2019), 67. doi: 10.1007/s00033-019-1112-4.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献