Modular edge irregularity strength of graphs

Author:

Koam Ali N. A.1,Ahmad Ali2,Bača Martin3,Semaničová-Feňovčíková Andrea34

Affiliation:

1. Department of Mathematics, College of Science, Jazan University, New Campus, Jazan 2097, Saudi Arabia

2. College of Computer Science and Information Technology, Jazan University, Jazan, Saudi Arabia

3. Department of Applied Mathematics and Informatics, Technical University, Letná 9, Košice, Slovakia

4. Division of Mathematics, Saveetha School of Engineering, SIMATS, Chennai, India

Abstract

<abstract><p>For a simple graph $ G = (V, E) $ with the vertex set $ V(G) $ and the edge set $ E(G) $, a vertex labeling $ \varphi: V(G) \to \{1, 2, \dots, k\} $ is called a $ k $-labeling. The weight of an edge under the vertex labeling $ \varphi $ is the sum of the labels of its end vertices and the modular edge-weight is the remainder of the division of this sum by $ |E(G)| $. A vertex $ k $-labeling is called a modular edge irregular if for every two different edges their modular edge-weights are different. The maximal integer $ k $ minimized over all modular edge irregular $ k $-labelings is called the modular edge irregularity strength of $ G $. In the paper we estimate the bounds on the modular edge irregularity strength and for caterpillar, cycle, friendship graph and $ n $-sun we determine the precise values of this parameter that prove the sharpness of the lower bound.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference26 articles.

1. G. Chartrand, M. Jacobson, J. Lehel, O. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congressus Numerantium, 64 (1988), 197–210.

2. M. Anholcer, C. Palmer, Irregular labellings of circulant graphs, Discrete Math., 312 (2012), 3461–3466. https://doi.org/10.1016/j.disc.2012.06.017

3. T. Bohman, D. Kravitz, On the irregularity strength of trees, J. Graph Theor., 45 (2004), 241–254. https://doi.org/10.1002/jgt.10158

4. B. Cuckler, F. Lazebnik, Irregularity strength of dense graphs, J. Graph Theor., 58 (2008), 299–313. https://doi.org/10.1002/jgt.20313

5. R. Faudree, J. Lehel, Bound on the irregularity strength of regular graphs, Colloq. Math. Soc. János Bolyai, 52 (1987), 247–256.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3