Affiliation:
1. Department of Mathematics, Chungnam National University, Daejeon 34134, Korea
2. Department of Mathematics, Hankuk University of Foreign Studies, Yongin 17035, Korea
Abstract
In this paper, we propose a minimization-based image denoising model for the removal of mixed stripe and Gaussian noise. The objective function includes the prior information from both the stripe noise and image. Specifically, we adopted a unidirectional regularization term and a nonconvex group sparsity term for the stripe noise component, while we utilized a nonconvex fractional order total variation (FTV) regularization for the image component. The priors for stripes enable adequate extraction of periodic or non-periodic stripes from an image in the presence of high levels of Gaussian noise. Moreover, the nonconvex FTV facilitates image restoration with less staircase artifacts and well-preserved edges and textures. To solve the nonconvex problem, we employed an iteratively reweighted $ \ell_1 $ algorithm, and then the alternating direction method of multipliers was adopted for solving subproblems. This led to an efficient iterative algorithm, and its global convergence was proven. Numerical results show that the proposed model provides better denoising performance than existing models with respect to visual features and image quality evaluations.
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference72 articles.
1. J. A. Richards, Remote sensing digital image analysis: an introduction, Springer Berlin, Heidelberg, 2013, 343–380. https://doi.org/10.1007/978-3-642-30062-2
2. I. Makki, R. Younes, C. Francis, T. Bianchi, M. Zucchetti, A survey of landmine detection using hyperspectral imaging, ISPRS J. Photogramm. Remote Sens., 124 (2017), 40–53. https://doi.org/10.1016/j.isprsjprs.2016.12.009
3. H. Zhang, J. Li, Y. Huang, L. Zhang, A nonlocal weighted joint sparse representation classification method for hyperspectral imagery, IEEE J-STARS, 7 (2017), 2056–2065. https://doi.org/10.1109/JSTARS.2013.2264720
4. Y. Tarabalka, J. Chanussot, J. A. Benediktssons, Segmentation and classification of hyperspectral images using watershed transformation, Pattern Recogn., 43 (2010), 2367–2379. https://doi.org/10.1016/j.patcog.2010.01.016
5. D. W. J. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, A. D. Stocker, Anomaly detection from hyperspectral imagery, IEEE Signal Proc. Mag., 19 (2002), 58–69. https://doi.org/10.1109/79.974730