Author:
Ali Liaqat, ,Khan Yaqoub Ahmed,Mousa A. A.,Abdel-Khalek S.,Farid Ghulam, , , ,
Abstract
<abstract>
<p>In this paper, we discuss some differential identities of MA-semirings with involution. The aim to study these identities is to induce commutativity in MA-semirings.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference24 articles.
1. M. A. Javed, M. Aslam, M. Hussain, On condition (A2) of Bandlet and Petrich for inverse semiqrings, Int. Math. Forum, 7 (2012), 2903–2914.
2. H. J. Bandlet, M. Petrich, Subdirect products of rings and distrbutive lattics, Proc. Edin. Math. Soc., 25 (1982), 135–171.
3. L. Ali, M. Aslam, Y. A Khan, Commutativity of semirings with involution, Asian-Eur. J. Math., 13 (2020), 2050153.
4. Y. A. Khan, M. Aslam, L. Ali, Commutativity of additive inverse semirings through f(xy) = [x, f(y)], Thai J. Math., 2018 (2018), 288–300.
5. S. Sara, M. Aslam, M. Javed, On centralizer of semiprime inverse semiring, Discuss. Math. Gen. Algebra Appl., 36 (2016), 71–84.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献