Piecewise differential equations: theory, methods and applications

Author:

Atangana Abdon12,İğret Araz Seda13

Affiliation:

1. Faculty of Natural and Agricultural Sciences, University of the Free State, South Africa

2. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

3. Faculty of Education, Siirt University, Siirt 56100, Turkey

Abstract

<abstract><p>Across many real-world problems, crossover tendencies are seen. Piecewise differential operators are constructed by using different kernels that exhibit behaviors arising in several real-world problems; thus, crossover behaviors could be well modeled using these differential and integral operators. Power-law processes, fading memory processes and processes that mimic the generalized Mittag-Leffler function are a few examples. However, the use of piecewise differential and integral operators cannot be applied to all processes involving crossovers. For instance, a considerable alteration eventually manifests when groundwater over-abstraction causes it to flow from confined to unconfined aquifers. The idea of piecewise differential equations, which can be thought of as an extension of piecewise functions to the framework of differential equations, is introduced in this work. While we concentrate on ordinary differential equations, it is important to note that partial differential equations can also be constructed with the same technique. For both integer and non-integer instances, piecewise differential equations have been introduced. We have explained the usage of the Laplace transform for the linear case and demonstrated how a new class of Bode diagrams could be produced. We have provided some examples of numerical solutions as well as conditions for the existence and uniqueness of their solutions. We discussed a few scenarios in which we used chaos and non-linear ordinary differential equations to produce novel varieties of chaos. We believe that this idea could lead to some significant conclusions in the future.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3