Author:
Suwan Iyad, ,Abdo Mohammed S.,Abdeljawad Thabet,Matar Mohammed M.,Boutiara Abdellatif,Almalahi Mohammed A., , , , , ,
Abstract
<abstract><p>This research paper deals with two novel varieties of boundary value problems for nonlinear hybrid fractional differential equations involving generalized fractional derivatives known as the $ \Psi $-Caputo fractional operators. Such operators are generated by iterating a local integral of a function with respect to another increasing positive function $ \Psi $. The existence results to the proposed systems are obtained by using Dhage's fixed point theorem. Two pertinent examples are provided to confirm the feasibility of the obtained results. Our presented results generate many special cases with respect to different values of a $ \Psi $ function.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference41 articles.
1. A. A. Kilbas, H. M. Shrivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. doi: 10.1016/s0304-0208(06)x8001-5.
2. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, 2010. doi: 10.1142/p614.
3. J. Hadamdard, Essai sur l'etude des fonctions données par leur développement de Taylor, J. Math. Pure. Appl., 8 (1892), 101–186.
4. R. Hilfer, Applications of Fractional Calculus in Physics, Singapore: World Scientific, 35 (2000), 87–130. doi: 10.1142/9789812817747_0008.
5. F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. doi: 10.1186/1687-1847-2012-142.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献