Polynomial time recognition of vertices contained in all (or no) maximum dissociation sets of a tree

Author:

Tu Jianhua, ,Zhang Lei,Du Junfeng,Lang Rongling, , , , ,

Abstract

<abstract><p>In a graph $ G $, a dissociation set is a subset of vertices which induces a subgraph with vertex degree at most 1. Finding a dissociation set of maximum cardinality in a graph is NP-hard even for bipartite graphs and is called the maximum dissociation set problem. The complexity of the maximum dissociation set problem in various sub-classes of graphs has been extensively studied in the literature. In this paper, we study the maximum dissociation problem from different perspectives and characterize the vertices belonging to all maximum dissociation sets, and no maximum dissociation set of a tree. We present a linear time recognition algorithm which can determine whether a given vertex in a tree is contained in all (or no) maximum dissociation sets of the tree. Thus for a tree with $ n $ vertices, we can find all vertices belonging to all (or no) maximum dissociation sets of the tree in $ O(n^2) $ time.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference21 articles.

1. H. B. Acharya, T. Choi, R. A. Bazzi, M. G. Gouda, The $k$-observer problem in computer networks, Networking Sci., 1 (2012), 15–22.

2. V. E. Alekseev, R. Boliac, D. V. Korobitsyn, V. V. Lozin, NP-hard graph problems and boundary classes of graphs, Theor. Comput. Sci., 389 (2007), 219–236. doi: 10.1016/j.tcs.2007.09.013.

3. M. Blidia, M. Chellali, S. Khelifi, Veritices belonging to all or to no minimum double dominating sets in trees, AKCE Int. J. Graphs Co., 2 (2005), 1–9.

4. R. Boliac, K. Cameron, V. V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Comb., 72 (2004), 241–253.

5. J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008. doi: 10.2307/3620535.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3