Abstract
<abstract><p>The barycentric rational collocation method for solving semi-infinite domain problems is presented. Following the barycentric interpolation method of rational polynomial and Chebyshev polynomial, matrix equation is obtained from discrete semi-infinite domain problem. Truncation method and transformation method are presented to solve linear and nonlinear differential equation defined on the semi-infinite domain problems. At last, three numerical examples are presented to valid our theoretical analysis.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference39 articles.
1. M. Maleki, I. Hashim, S. Abbasbandy, Analysis of IVPs and BVPs on semi-infinite domains via collocation methods, J. Appl. Math., 2012 (2012), 1–21. https://doi.org/10.1155/2012/696574
2. S. A. Odejide, Y. A. S. Aregbesola, Applications of method of weighted residuals to problems with Semi-infinite domain, Rom. J. Phys., 56 (2011), 14–24.
3. F. Auteri, L. Quartapelle, Galerkin-Laguerre spectral solution of self-similar boundary layer problems, Commun. Comput. Phys., 12 (2012), 1329–1358. https://doi.org/10.4208/cicp.130411.230911a
4. A. O. Adewumi, S. O. Akindeinde, A. A. Aderogba, Laplace-weighted residual method for problems with semi-infinite domain, J. Mod. Method Numer. Math., 7 (2016), 59–66.
5. H. F. Ismael, H. Bulut, H. M. Baskonus, W. Gao, Dynamical behaviors to the coupled schrdinger-boussinesq system with the beta derivative, AIMS Math., 6 (2021), 7909–7928. https://doi.org/10.3934/math.2021459
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献