Abstract
<abstract><p>In this paper, we define new subclasses of analytic functions related to a modified sigmoid function and analytic univalent function. Then, we attempt to investigate the upper bounds of the third and fourth Hankel determinant in the special case. Further, bound on third Hankel determinant of its inverse function is also investigated. In addition, we attempt to obtain the Fekete-Szegö inequality for the classes. Then, we estimate the bounds of initial coefficients for the function belongs to some kind of new subclasses when its inverse function also belongs to these new subclasses.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference31 articles.
1. I. Graham, G. Kohr, Geometric function theory in one and higher dimensions, New York: Marcel Dekker, 2003. https://doi.org/10.1201/9780203911624
2. J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, T. Am. Math. Soc., 223 (1976), 337–346. https://doi.org/10.1090/S0002-9947-1976-0422607-9
3. W. Ma, C. Minda, Aunified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Boston: International Press, 1992.
4. P. Goel, S. S. Kumar, Certain class of starlike functions associated with modified function, B. Malays. Math. Sci. So., 43 (2020), 957–991. https://doi.org/10.1007/s40840-019-00784-y
5. J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献