Author:
Kologani Mona Aaly, ,Borzooei Rajab Ali,Kim Hee Sik,Jun Young Bae,Ahn Sun Shin, , , ,
Abstract
<abstract><p>In this paper, we define the notions of intuitionistic fuzzy filters and intuitionistic fuzzy implicative (positive implicative, fantastic) filters on hoops. Then we show that all intuitionistic fuzzy filters make a bounded distributive lattice. Also, by using intuitionistic fuzzy filters we introduce a relation on hoops and show that it is a congruence relation, then we prove that the algebraic structure made by it is a hoop. Finally, we investigate the conditions that quotient structure will be different algebras of logics such as Brouwerian semilattice, Heyting algebra and Wajesberg hoop.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference21 articles.
1. P. Agliano, I. M. A. Ferreirim, F. Montagna, Basic hoops: An algebraic study of continuous t-norms, Studia Logica, 87 (2007), 73–98.
2. S. Z. Alavi, R. A. Borzooei, M. A. Kologani, Fuzzy filters in pseudo hoops, J. Intel. Fuzzy Syst., 32 (2017), 1997–2007.
3. S. Z. Alavi, R. A. Borzooei, M. A. Kologani, Filter theory of pseudo hoop algebras, Ital. J. Pure Appl. Math., 37 (2017), 619–632.
4. K. T. Atanassov, Intuitionistic fuzzy sets, Int. J. Bioautomation., 20 (2016), 1–6.
5. B. Bosbach, Komplementäre halbgruppen, axiomatik und arithmetik, Fund. Math., 64 (1969), 257–287.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献