An equilibrium optimizer with deep recurrent neural networks enabled intrusion detection in secure cyber-physical systems

Author:

Laxmi Lydia E1,Santhaiah Chukka2,Altaf Ahmed Mohammed3,Vijaya Kumar K.4,Prasad Joshi Gyanendra5,Cho Woong6

Affiliation:

1. Department of Computer Science and Engineering, GMR Institute of Technology, Andhra Pradesh, Rajam 532127, India

2. Professor Department of CSE, SV College of Engineering, Karakambadi, Tirupati, India

3. Department of Computer Engineering, College of Computer Engineering & Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

4. Department of Computer Science and Engineering, GITAM School of Technology, GITAM (Deemed to be University), Visakhapatnam, India

5. Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea

6. Department of Electronics, Information and Communication Engineering, Kangwon National University, Samcheok 25913, Gangwon State, Republic of Korea

Abstract

<abstract> <p>Cyber-physical systems (CPSs) are characterized by their integration of physical processes with computational and communication components. These systems are utilized in various critical infrastructure sectors, including energy, healthcare, transportation, and manufacturing, making them attractive targets for cyberattacks. Intrusion detection system (IDS) has played a pivotal role in identifying and mitigating cyber threats in CPS environments. Intrusion detection in secure CPSs is a critical component of ensuring the integrity, availability, and safety of these systems. The deep learning (DL) algorithm is extremely applicable for detecting cyberattacks on IDS in CPS systems. As a core element of network security defense, cyberattacks can change and breach the security of network systems, and then an objective of IDS is to identify anomalous behaviors and act properly to defend the network from outside attacks. Deep learning (DL) and Machine learning (ML) algorithms are crucial for the present IDS. We introduced an Equilibrium Optimizer with a Deep Recurrent Neural Networks Enabled Intrusion Detection (EODRNN-ID) technique in the Secure CPS platform. The main objective of the EODRNN-ID method concentrates mostly on the detection and classification of intrusive actions from the platform of CPS. During the proposed EODRNN-ID method, a min-max normalization algorithm takes place to scale the input dataset. Besides, the EODRNN-ID method involves EO-based feature selection approach to choose the feature and lessen high dimensionality problem. For intrusion detection, the EODRNN-ID technique exploits the DRNN model. Finally, the hyperparameter related to the DRNN model can be tuned by the chimp optimization algorithm (COA). The simulation study of the EODRNN-ID methodology is verified on a benchmark data. Extensive results display the significant performance of the EODRNN-ID algorithm when compared to existing techniques.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3