Analytical solutions for free convection flow of Casson nanofluid over an infinite vertical plate

Author:

Ahmad Mushtaq, ,Asjad Muhammad Imran,Akgül Ali,Baleanu Dumitru, , , , ,

Abstract

<abstract> <p>This research article is design to elaborate the rule and significance of fractional derivative for heat transport in drilling of nanofluid. The respective nanofluid formed by the suspension of clay nanoparticles in the base fluids namely Casson fluid. The physical flow phenomenon is demonstrated with the help of partial differential equations by utilizing the respective thermophysical properties of nanoparticles. Also the geometric and thermal conditions are imposed in flow domain. In the governing equations, the partial derivative with respect to time replaced by new hybrid fractional derivative and then solved analytically for temperature and velocity field with the help of Laplace transformed. The obtained solutions for temperature and velocity are presented geometrically by Mathcad software to see the effectiveness of potent parameters. The temperature and velocity present a significant increasing trend for increasing volume fraction parameter. The obtained results for temperature as well as velocity are also compared with the existing literature and it is concluded that field variables with new hybrid fractional derivative, show more decaying trend as compare to the results with Caputo and Caputo-Fabrizio fractional derivatives.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference46 articles.

1. H. T. Alkasasbeh, M. Z. Swalmeh, A. Hussanan, M. Mamat, Effects of mixed convection on methanol and kerosene oil based micropolar nanofluid containing oxide nanoparticles, CFD Letters, 11 (2019), 55–68.

2. A. Raju, O. Ojjela, P. K. Kambhatla, A comparative study of heat transfer analysis on ethylene glycol or engine oil as base fluid with gold nanoparticle in presence of thermal radiation, J. Therm. Anal. Calorim., 2020.

3. H. W. Xian, N. Azwadi, C. Sidik, S. R. Aid, T. Ken, Y. Asako, Review on preparation techniques, properties and performance of hybrid nanofluid in recent engineering applications, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 45 (2018), 1–13.

4. S. Aman, I. Khan, Z. Ismail, M. Z. Salleh, Applications of fractional derivatives to nanofluids: Exact and numerical solutions, Math. Model. Nat. Pheno., 13 (2018), 1–12.

5. A. Hussanan, N. T. Trung, Heat transfer analysis of sodium Carboxymethyl Cellulose based nanofluid with Tiatania nanoparticles, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 56 (2019), 248–256.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3