A class of HOC finite difference method for elliptic interface problems with imperfect contact

Author:

Cao Fujun12,Yuan Dongfang12

Affiliation:

1. School of Science, Inner Mongolia University of Science and Technology, Baotou, China

2. School of Mathematics and Science, Inner Mongolia Normal University, Hohhot, China

Abstract

<abstract><p>The elliptic interface problems with imperfect contact have found applications in numerical solutions of the Stefan problem of the solidification process and crystal growth, composite materials, multi-phase flows, etc. In this paper a 1D elliptic interface problem with imperfect contact is considered. A class of high-order compact finite difference schemes are constructed on body-fitted and non-body-fitted mesh, respectively. For each case, the second-, third- and fourth-order approximations of implicit jump conditions are provided by using the jump conditions and its high-order derivatives. Numerical examples are provided to verify the performance of the schemes. The numerical results demonstrate that the schemes have theoretical accuracy for elliptic interface problems with imperfect contact.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference47 articles.

1. A. A. Samarskii, V. B. Andreev, Differential method for elliptic equations [in Russian], Nauka, Moscow, 1976.

2. A. A. Samarskii, The theroy of difference scheme, Marcel Dekker, Inc., 2001.

3. A. A. Samarskii, P. N. Vabishchevich, Computational heat transfer, Vol. 1, John Wiley & Sons Ltd, 1995.

4. Z. Q. Huang, E. J. Ding, Transport theory, 2 Eds., Beijing: Science Press, 2008.

5. G. Lopez-Ruiz, J. Bravo-Castillero, R. Brenner, M. E. Cruzd, R. Guinovart-Díazb, L. D. Pérez-Fernándeze, et al., Variational bounds in composites with nonuniform interfacial thermal resistance, Appl. Math. Model., 39 (2015), 7266–7276. https://doi.org/10.1016/j.apm.2015.02.048

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3